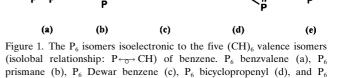
Small Neutral P_n Molecules

Otto J. Scherer*

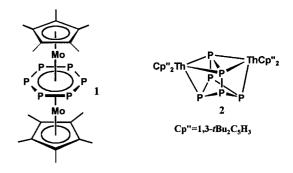
benzene (e).

Among the stable and well-studied element modifications of phosphorus are, besides the "parent structure" of white, tetrahedral P_4 , the modifications resulting from thermolysis, namely, black phosphorus (double layers of chairlike P_6 rings), violet or Hittorf's phosphorus (P_2 - P_8 - P_2 - P_9 repeating units that form tubes of five-membered rings, which, in a simplified way, can be described as being arranged crosswise like wood piles), [1] and red phosphorus, whose controversial structure was only recently predicted by theory by Häser et al. [2] (P_{10} - P_2 repeating units) and structurally confirmed in (CuI)₃ P_{12} by Pfitzner et al. [3] as helical P_{10} - P_2 strands embedded in a matrix of CuI layers.


There have been numerous attempts to experimentally characterize the small molecules P_3 , P_4 , P_5 , and P_6 as neutral species. In this respect, the research groups of Schwarz (Berlin) and Jutzi (Bielefeld) have now achieved a major breakthrough^[4] with the detection of neutral P_6 in the gas phase by neutralization–reionization (NR) mass spectrometry.^[5]

Starting from the structurally characterized P_6 benzvalene derivative $Cp_2^*P_6^{[6]}$ ($Cp^*=\sigma$ -bound C_5Me_5), whose EI mass spectrum shows $Cp^*P_6^+$ and Cp^{*+} as the major fragments along with the molecular ion, P_6^+ and P_n^+ (n=1-5) are detected in the following order of intensity $P_4^+\gg P_3^+>P_2^+\approx P_6^+\gg P_5^+\approx P^+$ [Eq. (1)] by means of the neutral fragment reionization method (N_fR), a variation of the NR method.

$$\begin{array}{c}
\text{Cp*Ps}^{+} \xrightarrow{He, Xe} & \text{Cp*+} + \text{Ps} & \xrightarrow{ton deflection} \\
& & & & & \\
\text{Cp*Ps} & & & & & \\
\end{array}$$
(1)


Extensive theoretical investigations^[7] have established the following order for the stability of the five P_6 isomers (Figure 1):^[7a] (a) > (b) > (c) > (d) \gg (e). On the basis of this finding along with the P_6 benzvalene framework of $Cp_2^*P_6$ the authors propose a benzvalene structure ((a) in Figure 1) for the neutral P_6 molecule detected in the gas phase.

As a general rule, neutral and charged P_n molecules are more stable the fewer double bonds the molecule contains

and the larger the value of n is. The slightly higher stability of P_6 benzvalene over P_6 prismane (Figure 1) can be explained when additional strain and resonance energies are taken into consideration.^[7b]

To characterize unstable molecules, one can either turn to matrix techniques or to coordinative stabilization; it is also possible in certain cases to achieve kinetic stabilization by using sterically demanding substituents. Pertinent examples from the organometallic chemistry of phosphorus are the compounds 1 and 2, whose P_6 ligand in the molybdenum triple-decker sandwich complex 1 contains the all-phosphorus analogue of benzene as the middle deck, [8a,b] whereas the dinuclear thorium complex 2 contains an open-edge P_6 benzvalene unit. [8c]

Neutral P_5 has so far not been detected. Of the structures calculated (Figure 2), the P_4 butterfly framework (f) (cf. P_6

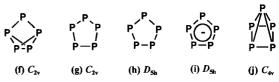


Figure 2. Calculated geometries (f), (g), (h), and (j) of neutral P_5 as well as planar, aromatic *cyclo*- P_5^- (i).

Fachbereich Chemie der Universität Kaiserslautern Erwin-Schrödinger-Strasse, 67663 Kaiserslautern (Germany)

Fax: (+49)631-205-4676 E-mail: oscherer@rhrk.uni-kl.de

^[*] Prof. Dr. O. J. Scherer

benzvalene, (a) in Figure 1) bridged by one P atom represents the most stable P_5 structure, followed by (g) (slightly distorted planar $\,P_5\,$ ring) and the almost energetically equivalent structures of the undistorted P_5 ring (h) and of the square-pyramidal P_5 (j). $^{[7a]}$

If for P_5 one goes from the 25 valence electron (VE) radical to the 26 VE anion ((i) in Figure 2) by introduction of a negative charge, then, as shown by Baudler et al., $^{[9a]}$ the all-phosphorus analogue of the cyclopentadienide ion (*cyclo-P₅* $^-$ =*cyclo* $C_5H_5^-$) can be prepared in solution in the form of the MP₅ salts (M=Li, Na) and characterized; *cyclo-P₅* $^-$ is almost as aromatic as the $C_5H_5^-$ analogue. $^{[10]}$ As for the P_6

benzene (see complex 1), the 6π -electron system of cyclo- P_5^- can also be coordinatively stabilized in the form of the unusually stable (cf. the isoelectronic ferrocene, $[Cp_2Fe]$) sandwich complex $3^{[9b,a]}$.

Of the calculated structures for neutral $P_4^{[7a]}$, as expected the P_4 tetrahedron ((k) in

Figure 3) of white phosphorus is by far the most stable form. It is followed by the P_4 butterfly (roof-type) form (l) and then by the P_4 rectangle (m). A P_4 zigzag chain comprising two weakly bound P_2 units is a particularly unstable form.

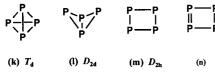


Figure 3. Calculated geomtries (k)-(m) of neutral P_4 as well as planar tetraphosphacyclobutadiene (n).

All P_4 structure alternatives shown in Figure 3 can be coordinatively stabilized in the form of complexes with 17-VE L_nM fragments (2 × terminal for (l)), 16-VE L_nM fragments

(μ -bridging for (1), and terminal for (k)) and 14-VE L_nM fragments (type (n) as tetraphosphacyclobutadiene complex **4**).^[11]

For the neutral 15-VE P₃ radicals theoretical studies^[7a] report the isosceles P₃ triangle ((o) in Figure 4) to be slightly

more stable than the equilateral triangle (p), and the linear arrangement (q) is significantly more unstable.

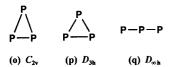


Figure 4. Calculated geometries (o) – (q) of the neutral P_3 radical.

The equilateral P_3 triangle (p) can be stabilized both in triple-decker complexes $[L_nM(P_3)ML_n]^{n+}$ as well as in triphosphametallatetrahedranes $[L_nMP_3]$ with one 15-VE L_nM fragment. Bent P_3 ligands are found in polynuclear complexes. 111

If white phosphorus P_4 is heated to 1000-1500 °C, one finds exclusively the equilibrium $P_4 \rightleftharpoons 2P_2$ and no indication of other P_n species.^[13] P_2 , $P \rightleftharpoons P$; a well-characterized molecule

both theoretically $^{[7]}$ and in the gas phase, displays diverse ligand properties similar to those of acetylene HC \equiv CH to which it is the isoelectronic and isolobal. $^{[11]}$

The extension of the use of neutralization-reionization mass spectrometry for the detection of new neutral P_n allotropes will be dependent primarily on the availablity of suitable P_n starting materials bearing easily removable substituents or ligands—a new challenge for preparative phosphorus chemistry. A worthwhile goal besides P₅[9a,b] (provided that suitable precursors can be found) would be P₈ cuneane, which according to calculations [7,14] is the most stable P₈ isomer. As an almost ubiquitous P₈ building block it is a structural motif of Hittorf's phosphorus, is discussed for the clusters P₂₅⁺, P_{33}^+ , P_{41}^+ , and P_{49}^+ , whose P_n^+ frameworks possibly consist of nP_8 cuneane building blocks (n=3-6) each with an additional P cap,[14] and could be complex-chemically stabilized as a P₈ cuneane with two open-edges.^[15] If one goes from the small to the larger neutral P_n molecules, then P_{20} , the allphosphorus analogue of the Paquette's (CH)20 dodecahedron (a platonic solid with 12 pentagons, 20 vertices, and 30 edges) represents a modification of phosphorus, the search for which should not be a search for utopia, particularly since theory predicts that P₂₀ lies energetically only slightly above the value for $5 \times P_4$ units.[16, 7d]

^[1] H. Thurn, H. Krebs, Acta Crystallogr. Sect. B 1969, 125-135.

^[2] S. Böcker, M. Häser, Z. Anorg. Allg. Chem. 1995, 621, 258-286.

^[3] A. Pfitzner, E. Freudenthaler, Angew. Chem. 1995, 107, 1784-1786;Angew. Chem. Int. Ed. Engl. 1995, 34, 1647-1649.

^[4] D. Schröder, H. Schwarz, M. Wulf, H. Sievers, P. Jutzi, M. Reiher, Angew. Chem. 1999, 111, 3723–3726; Angew. Chem. Int. Ed. 1999, 38, 3513–3515.

^[5] C. A. Schalley, G. Hornung, D. Schröder, H. Schwarz, *Chem. Soc. Rev.* 1998, 27, 91 – 104.

^[6] P. Jutzi, R. Kroos, A. Müller, M. Penk, Angew. Chem. 1989, 101, 628 – 629; Angew. Chem. Int. Ed. Engl. 1989, 28, 600 – 601.

^[7] a) R. O. Jones, D. Hohl, J. Chem. Phys. 1990, 92, 6710-6721; b) D. S. Warren, B. M. Gimarc, J. Am. Chem. Soc. 1992, 114, 5378-5385; c) R. Janoschek, Chem. Ber. 1992, 125, 2687-2689; d) M. Häser, U. Schneider, R. Ahlrichs, J. Am. Chem. Soc. 1992, 114, 9551-9559; e) P. Ballone, R. O. Jones, J. Chem. Phys. 1994, 100, 4941-4946; f) M. Häser, O. Treutler, J. Chem. Phys. 1995, 102, 3703-3711.

^[8] a) O. J. Scherer, H. Sitzmann, G. Wolmershäuser, Angew. Chem. 1985, 97, 358-359; Angew. Chem. Int. Ed. Engl. 1985, 24, 351-352; b) P. Jutzi, R. Kroos, Chem. Ber. 1988, 121, 1399-1401; c) O. J. Scherer, B. Werner, G. Heckmann, G. Wolmershäuser, Angew. Chem. 1991, 103, 562-563; Angew. Chem. Int. Ed. Engl. 1991, 30, 553-554.

^[9] a) M. Baudler, S. Akpapoglou, D. Ouzounis, F. Wasgestian, B. Meinigke, H. Budzikiewicz, H. Münster, *Angew. Chem.* 1988, 100, 288–289; *Angew. Chem. Int. Ed. Engl.* 1988, 27, 280–281; b) O. J. Scherer, T. Brück, *Angew. Chem.* 1987, 99, 59; *Angew. Chem. Int. Ed. Engl.* 1987, 26, 59.

 ^[10] a) E. J. P. Malar, J. Org. Chem. 1992, 57, 3694 – 3698; b) A. Dransfeld,
 L. Nyulászi, P. von R. Schleyer, Inorg. Chem. 1998, 37, 4413 – 4420.

^[11] O. J. Scherer, Acc. Chem. Res. 1999, 32, 751 – 762.

^[12] M. Di Vaira, L. Sacconi, Angew. Chem. 1982, 94, 338-351; Angew. Chem. Int. Ed. Engl. 1982, 21, 330-343.

^[13] H. Bock, H. Müller, Inorg. Chem. 1984, 23, 4365-4368.

^[14] M. D. Chen, J. T. Li, R. B. Huang, L. S. Zheng, C. T. Au, Chem. Phys. Lett. 1999, 305, 439 – 445.

^[15] M. E. Barr, B. R. Adams, R. R. Weller, L. F. Dahl, J. Am. Chem. Soc. 1991, 113, 3052–3060; M. Scheer, U. Becker, E. Matern, Chem. Ber. 1996, 129, 721–724.

^[16] C.-H. Hu, M. Shen, H. F. Schaefer III, Theor. Chim. Acta 1994, 88, 29–33.